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Abstract 

Background: Understanding the potential links between extreme weather events and human 

health in India is important in the context of vulnerability and adaptation to climate change. 

Research exploring such linkages in India is sparse.  

Objectives: This study evaluates the association between extreme precipitation and 

gastrointestinal illness-related hospital admissions in Chennai, India from 2004 to 2007. 

Methods: Daily hospital admissions were extracted from two government hospitals in Chennai, 

India and meteorological data were retrieved from the Chennai International Airport. The 

association between extreme precipitation (≥ 90th percentile) and hospital admissions was 

evaluated using generalized additive models. Both single-day and distributed lag models were 

explored over a 15-day period, controlling for apparent temperature, day of week, and long-term 

time-trends. A stratified analysis explored the association across age and season. 

Results: Extreme precipitation was consistently associated with GI-related hospital admissions. 

The cumulative summary of risk ratios estimated for a 15-day period corresponding to an 

extreme event (relative to no precipitation) was 1.60 (95% CI: 1.29, 1.98) among all ages, 2.72 

(95% CI: 1.25, 5.92) among the young (≤ 5 years of age), and 1.62 (95% CI: 0.97, 2.70) among 

the old (≥ 65 years). The association was stronger during the pre-monsoon season (March-May) 

with a cumulative risk ratio of 6.50 (95% CI: 2.22, 19.04) for all ages combined compared to 

other seasons. 

Conclusions: Hospital admissions related to gastrointestinal illness were positively associated 

with extreme precipitation in Chennai, India, with positive cumulative risk ratios for a 15-day 

period following an extreme event in all age groups. Projected changes in precipitation and 
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extreme weather events suggest that climate change will have important implications for human 

health in India where health disparities already exist.  
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Introduction 

Global climate change is expected to increase the frequency, intensity, and duration of extreme 

weather events, with potential adverse effects on human health. High-risk areas include those 

already experiencing a scarcity of resources, environmental degradation, high rates of infectious 

disease, weak infrastructure, and overpopulation (Patz et al. 2005). Vulnerable populations 

include the elderly, children, urban populations, and the poor (Ebi and Paulson 2010; Gangarosa 

et al. 1992; O’Neill and Ebi 2009; Trinh and Prabhakar 2007). Understanding the relationship 

between climate variability and human health in India is important as India integrates existing 

public health programs with climate change adaptation strategies and early warning systems 

(Bush et al. 2011).  

Diarrheal disease remains among the top five causes of death in low- and middle-income 

countries, particularly among children under five (Boschi-Pinto et al. 2008). However, research 

linking weather variability to diarrheal disease in India is sparse. Evidence from elsewhere in the 

world suggests that waterborne disease outbreaks are preceded by extreme precipitation events 

(Curriero et al. 2001) and that the seasonal contamination of surface water may explain some of 

the variability in the occurrence of many waterborne diseases (Patz et al. 2008). Outbreaks of 

Cholera were linked to extreme precipitation and temperature in the Lake Victoria Basin (Olago 

et al. 2007), Bangladesh (Pascual et al. 2000, 2008), and Peru (Checkley et al. 2000). Further 

evidence suggests that seasonal changes in temperature and precipitation affect the incidence of 

cryptosporidiosis around the world (Jagai et al. 2009). High levels of water volume were 

associated with infectious gastrointestinal illness in northern Canada (Harper et al. 2011) as well 

as cases of rotavirus infection in Bangladesh (Hashizume et al. 2007). In Taiwan, extreme 

precipitation was linked to waterborne infections (Chen et al. 2012). Thus, evaluating the 
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association between extreme precipitation and gastrointestinal (GI) illness in Chennai, India 

contributes valuable site-specific information to a growing set of literature on the topic. The 

primary goal of this study was to evaluate the association between extreme precipitation and GI-

related hospital admissions over a 15-day period using a distributed lag framework.  

Data and Methods 

Study location 

The study was conducted in Chennai, the capital city of India’s southern state, Tamil Nadu 

(Figure 1). Chennai has an estimated population of 4.68 million people and is one of the most 

densely populated cities in the world. Approximately 78% of Chennai’s population has access to 

tap water from a treated source and 58% to a piped sewage connection (Census of India 2011). 

Nearly 10% of Chennai’s population lives in disadvantaged, slum-like settings where access to 

safe drinking water is severely limited (Chandramouli 2003; McKenzie and Ray 2009).  

Hospital admission data 

Daily hospital admission data for the period 2004-2007 were collected from two government 

hospitals [Madras Medical College (MMC) and Kilpauk Medical College (KMC)] after 

obtaining relevant approval from the Directorate of Public Health, Government of Tamil Nadu. 

These two hospitals account for nearly 50% of available beds in government facilities in 

Chennai. A third government facility, Stanley Medical Hospital, provides another 25%, while the 

last 25% is provided by several smaller facilities. In general, Indian government hospitals serve 

lower socio-economic patients, while the majority of middle-class and high-income patients are 

served by private medical facilities. Thus, these two government hospitals represent only a 

fraction of Chennai's overall population, but a strong majority of the low socio-economic 
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population. These data were cleaned and organized in support of previously published analyses 

(Balakrishnan et al. 2011).  

Hospital admissions were defined as GI-related if the primary, secondary, or tertiary 

International Classification of Disease, 10th revision (ICD-10) code was listed as intestinal 

infectious disease (A00-A09), helminthiases (B65-B83), or GI-related symptoms (R11-nausea 

and vomiting, R50-fever, R51-headache). Cases were selected by matching ICD-10 codes to 

ICD-9 codes used in previous research (Morris et al. 1996; Schwartz et al. 2000). Data from the 

two hospitals were combined and collapsed into daily hospitalization counts of gastrointestinal 

illnesses. Admissions lacking an ICD-10 code were categorized as unclassified. 

Meteorological data 

Daily meteorological data, monitored at the Chennai International Airport (Figure 1) and 

available from NOAA’s National Climatic Data Center (NCDC) Global Surface Summary of the 

Day (GSOD) (NCDC 2011) were also collected for the period 2004-2007. Parameters extracted 

included precipitation, temperature, dewpoint, and relative humidity.  

For this analysis, daily precipitation was categorized using the overall distribution during the 

2004-2007 study period to assign cut-points.  Precipitation categories were defined as equal to 0 

millimeters (mm) (reference category); greater than 0, but less than the 90th percentile 

(approximately 12 mm or 0.5 inches); and greater than or equal to the 90th percentile. The 90th 

percentile was chosen as the cutoff based on previous research stating that a majority of 

waterborne outbreaks were preceded by extreme precipitation, above the 90th percentile 

(Curriero et al. 2001; Rose et al. 2000). This analysis focuses on the effects of extreme 

precipitation relative to zero precipitation.  
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Statistical analysis 

We hypothesized that extreme precipitation (≥ 90th percentile) would be associated with an 

increased risk of GI-related hospital admissions, but not all-cause hospital admissions. 

Evaluating the association between extreme precipitation and all-cause admissions served as a 

negative control providing evidence that any observed association between extreme precipitation 

and gastrointestinal illness was not simply an artifact of the time series data. 

Generalized additive models were fit with daily counts of hospital admissions as the dependent 

variable and categorical daily precipitation as the independent variable, adjusted for potential 

confounders (Hastie and Tibshirani 1986, 1990). In order to control for long-term time trends in 

hospital admissions, a nonlinear smoothing term for time (i.e., a penalized spline) was included. 

The smoothing parameters were chosen to minimize the generalized cross validation (GCV) 

score in the generalized additive model (Hastie and Tibshirani 1986, 1990). An over-dispersion 

parameter was included to account for instances where the sample variance differed from the 

sample mean (McCullagh and Nelder 1989). Dean’s test was used to evaluate over-dispersion 

(Dean 1992).  

Potential confounders  

Daily average apparent temperature (AT), defined as: 2.653 + (0.994 × Ta) +(0.0153 × Td
2), 

where Ta is air temperature (˚C) and Td is dew point temperature (˚C) (Kalkstein and Valimont 

1986; Steadman 1979) was included as a potential confounder. AT was used because it 

represents the combined effects of temperature and humidity, which have been linked to the 

replication, persistence, and transmission of pathogens in the environment (Checkley et al. 2000; 

Fleury et al. 2006; Naumova et al. 2007; Singh et al. 2001) and the health of vulnerable 
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populations (Kovats and Akhtar 2008; Trinh and Prabhakar 2007). All models included average 

daily apparent temperature on the day of hospitalization as a continuous variable. 

An indicator variable representing the day of week (DOW) of hospitalization was also included 

as a potential confounder. Because the very young and the very old are often at an increased risk 

of hospitalization, we performed separate analyses stratified by age. Following standard 

definitions (WHO 2011; HHS 2011), young was defined as 5 years old and under (≤ 5), and old 

was defined as 65 years and older (≥ 65). Individuals between 6 and 64 were categorized as 

intermediate. Models were not adjusted for holidays. 

Lags 

Based on previous reports, GI-related hospital admissions were expected to peak several days 

after the occurrence of an extreme precipitation event due to delayed environmental transport of 

pathogens and delayed onset of clinical symptoms. Previous studies have reported a delayed 

onset of symptoms and subsequent hospitalization following extreme precipitation (Aramini et 

al. 2000; Curriero et al. 2001; Egorov et al. 2003; Schwartz et al. 2000). Incubation periods of 

waterborne pathogens can range from one day (e.g., for Shigella, Salmonella, and Rotavirus) to 

up to two weeks (e.g., for Cryptosporidium and E.coli) (Haley et al. 2009; Jagai et al. 2009). To 

account for this variability, the association was explored across a 15-day lag. 

Initial exploratory analysis comprised of fitting generalized additive models with 15 separate 

single-day lags prior to the day of hospital admission (Model 1):. 

 log[E(HAt)] = ß0 + ß1PRCPt-q + ß2ATt + ß3DOWt + s1(time),   [1] 

where HA is the number of hospital admissions, PRCP is the daily precipitation variable, t 

represents the day of hospitalization, q denotes single-day lags 1-15 days prior to the day of 
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hospital admission (q = 1, 2, …, 15), AT is daily average apparent temperature, DOW is day of 

week, and s1(time) is a penalized spline using calendar time with smoothing parameters chosen 

to minimize the generalized cross validation score.  

The main analysis included a distributed lag model (Schwartz 2000; Zanobetti et al. 2000) to 

evaluate the cumulative effect over a 15-day period following an extreme precipitation event 

(Gasparrini et al. 2010). Distributed lag models, common in air pollution studies (Schwartz 2000; 

Zanobetti et al. 2000), provide a systematic way to investigate the distribution of effects over 

time. We constrained model coefficients using the lag number to fit a polynomial function 

(Schwartz 2000; Zanobetti et al. 2000) to reduce collinearity resulting from correlated levels of 

precipitation on days that are close together in time. This approach allows the cumulative effect 

of precipitation to be modeled over the entire lag period, simultaneously estimating the non-

linear and delayed effects (Model 2): 

 log[E(HAt)] = ß0 + ∑15
q=1 αq PRCPt-q + ß2ATt + ß3DOWt + s2(time)  [2] 

where αq is the effect of extreme precipitation q days before the day of hospitalization and 

s2(time) is a penalized spline using calendar time with smoothing parameters chosen to minimize 

the generalized cross validation score. The cumulative summary of risk ratio estimates 

corresponding to extreme precipitation is given by ∑15
q=1 αq. 

Seasonal analysis 

The Indian monsoon season is characterized by extreme precipitation that contributes to >85% of 

India's annual rainfall (Vialard et al. 2011). A stratified analysis explored the association across 

seasons defined according to the Indian Meteorological Department (IMD) (IMD 2011) and 

Vialard et al. (2011) as: winter (January-February), pre-monsoon (March-May), early monsoon 
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(June-September), and late monsoon (October-December). In considering only one season, for 

example winter, a discontinuous time-series associated with the outcome variable would 

normally be introduced in the transition from one winter to the next. Whereas this naïve method 

would string the four winters together and ignore that discontinuity in the temporal profile, we 

adopted a two-stage approach that first estimates the spline term based on the entire time-series 

using all days and a simple unadjusted Poisson regression model (Model 3) and then incorporates 

the spline estimates as an offset in the full regression model (Model 4.): 

 log[E(HAt)] = s3(time)        [3] 

 log[E(HAt)] = ß0 + ∑15
q=1 αq PRCPt-q + ß2ATt + ß3DOWt + offsett ,   [4] 

where offset represents the estimated spline terms s3(time) from the full time-series evaluated at 

day t. 

Sensitivity analysis 

Since the annual precipitation distribution is heavily influenced by the monsoon, a sensitivity 

analysis was conducted to compare the effect of extreme precipitation between the 

predominantly wet season and the rest of the year: late monsoon (Oct-Dec) compared to dry 

(Jan-Sept). A sensitivity analysis was also run excluding 2004 data from all analyses to confirm 

that missing data early in the study period did not bias the results. 

For all models, cumulative risk ratio estimates were calculated corresponding to extreme daily 

precipitation (≥ 90th percentile), where no precipitation was the reference category. Estimates 

from the distributed lag models represent the cumulative summary of risk ratio estimates of a 

hospital admission (for GI-related, all-cause, or unclassified cases) during 15-day periods 

corresponding to an extreme precipitation event (a day with precipitation ≥ 90th percentile) 
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relative to the cumulative risk during 15-day periods following days with no precipitation. The 

level of significance for all statistical tests was set to 0.05.Analyses were run using SAS Version 

9.2 (SAS Institute, Cary NC) GAM package (Hastie and Tibshirani 1986, 1990) and R (R 

Foundation for Statistical Computing, Vienna, Austria) DLNM package (Gasparrini et al. 2010). 

Results 

Descriptive analysis 

Daily precipitation totals during the study period ranged from 0 to 283 mm with a daily mean of 

4.48 mm (Table 1, Figure 2A). The range in daily mean precipitation varied from 3.45 mm in 

2007 to 6.40 mm in 2005; there were several more days with precipitation totals greater than 100 

mm in 2005 as compared to other years. Seasonal precipitation varied with the onset of the 

monsoon; daily mean precipitation varied from 0.17 mm in winter to 10.73 mm in late monsoon. 

Precipitation showed a skewed distribution; out of a total 1,461 days, 991 days (68%) had 0 mm 

precipitation and 424 days (29%) had greater than 0 mm. Precipitation data were missing on 46 

days (3%). The 90th percentile of precipitation used as the cut-point in the analysis was 11.94 

mm. The number of extreme events also varied with season with 10 events during winter, 32 

events during pre-monsoon, 70 events during early monsoon, and 32 events during late monsoon. 

Daily average apparent temperature was consistently near 33°C (91°F) across years (Figure 2B); 

apparent temperature showed slight variation across seasons: 28°C during winter and 35°C 

during pre- and early-Monsoon.  

GI-related hospital admissions accounted for approximately 4% of all hospital admissions (Table 

2. While unclassified admissions also accounted for approximately 4% of all hospital 

admissions, they ranged from 1% during 2004-2006 to 11% in 2007. This spike in unclassified 
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admissions could not be systematically explained. The number of all-cause hospital admissions 

varied from 57,237 in winter to 107,809 in early monsoon; GI-related admissions varied from 

2,344 in winter to 4,893 in early monsoon; unclassified hospital admissions ranged from 1,090 in 

winter to 5,265 in late monsoon (Table 2). 

Main effect analysis 

Exploratory analysis using single-day lag models indicated that extreme precipitation was 

associated with gastrointestinal illness at later lags (lags 6, 8, 10, 11, 14, and 15 indicated a 

positive association) for the overall population (Supplemental Material, Table S1). For example, 

GI-related hospital admissions had a risk ratio of 1.10 (95% CI: 1.02, 1.17) at lag 10 and 1.14 

(95% CI: 1.07, 1.22) at lag 15. Unexpectedly, extreme precipitation showed a protective effect 

for unclassified hospital admissions at lags 7 through 15.  

In the distributed lag model, extreme precipitation was significantly associated with GI-related 

hospital admissions with a cumulative risk ratio equal to 1.60 (95% CI: 1.29, 1.98) controlling 

for AT, DOW, and long-term time trends (Table 3). 

Among the young, the cumulative risk ratio of GI-related hospital admissions 2.72 for a 15-day 

period following an extreme event compared with a 15-day period following days with no 

precipitation (95% CI: 1.25, 5.92). Among the old, the association was also positive, but not 

significant with a cumulative risk ratio of 1.62 (95% CI: 0.97, 2.70). As expected, results for the 

intermediate age group were consistent with the overall population: there was a positive 

association for GI-related admissions with a cumulative risk ratio of 1.61 for a 15-day period 

following an extreme event (95% CI: 1.27, 2.03) and no association for all-cause admission. 
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Unclassified admissions revealed a negative association among the overall, old, and intermediate 

age groups.  

Seasonal analysis 

Using the two-stage technique within the distributed lag framework, extreme precipitation was 

associated with both all-cause and GI-related hospital admissions during the pre-monsoon season 

with a cumulative risk ratio of 4.61 (95% CI: 2.57, 8.26) and 6.50 (2.22, 19.04), respectively 

(Table 4). Models stratified by both age and season did not always converge due to low counts of 

hospital admissions and too few extreme precipitation events (results not shown). 

Results from the seasonal sensitivity analysis were largely consistent with the overall analysis 

(Table 4). The dry season, defined as January-September followed a similar pattern as the pre-

monsoon season, defined as March-May, with positive associations for both all-cause, and GI-

related hospital admissions. Cumulative risk ratios during the dry season were equal to 1.70 

(95% CI: 1.24, 2.33) and 1.88 (95% CI: 1.06, 3.33) for all-cause and GI-related, respectively.  

Discussion 

GI-related hospital admissions in Chennai, India were consistently associated with extreme 

precipitation (≥ 90th percentile) over a 15-day lag. A study based in northern Canada reported 

similar results: high water volume was associated with a 1.34 times increase in the number of 

GI-related clinic visits over a 2-week lag (p < 0.05) (Harper et al. 2011). Another study reported 

that rainfall events above the 93rd percentile were associated with a 2.28 times (95% CI: 1.22, 

4.23) increase in the risk of waterborne outbreaks (Thomas et al. 2006). Previous work also 

explored the effect of individual infectious agents suggesting that heavy precipitation was 

associated with a 2.45 times (95% CI: 1.59, 3.78) increase in Enterovirus and that torrential 
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precipitation was associated with a 2.85 times (95% CI: 2.06, 3.95) increase in Bacillary 

dysentery (Chen et al. 2012). Another study concluded that an IQR increase in drinking water 

turbidity (likely a result of extreme precipitation) was positively associated with the risk of 

hospital admissions among children aged 0-15 at lags 8 and 13 (Schwartz et al. 1997); these 

findings are consistent with our results reporting a significant association between extreme 

precipitation and GI-related hospital admissions among the young over a 15-day lag. While 

previous studies have incorporated a lagged effect, they do not present results form a distributed 

lag model as we do here.  

The seasonal analysis revealed a significant association between extreme precipitation and the 

risk of GI-related hospital admissions during the drier, pre-monsoon season. While previous 

studies have not evaluated the impact of extreme events during relatively dry periods, they do 

suggest that admission rates are elevated during both high and low rainfall extremes in 

Bangladesh (Hashizume 2007); in England and Wales waterborne disease outbreaks were 

preceded by both high and low rainfall (Nichols et al. 2009). Although several studies have 

characterized the Indian monsoon season, few have examined the impact of heavy precipitation 

on the burden of waterborne disease in this region. Recent findings report an increased frequency 

of heavy rain events, but a decreased number of rainy days and a decrease in total precipitation 

(Kumar and Jain 2011). Additionally, the number of severe cyclonic storms and the amount of 

rainfall off the Indian Coast has increased, with an observed decrease in precipitation during the 

summer monsoon and an increasing trend in precipitation during both the pre- and post-monsoon 

(Dash et al. 2007). In some cases, severe outbreaks of waterborne disease have been directly 

associated with flooding (Sur et al. 2000).  
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The association between extreme precipitation and GI-related hospital admissions could have 

important implications for public health and water resource professionals in low- and middle-

income countries with a high burden of gastrointestinal illness. Sanitation, access to treated tap 

water, and piped sewage connections are necessary to reducing the overall risk of GI-related 

hospital admissions. These findings suggest that heightened vigilance following an extreme 

precipitation event, raising awareness of the potential link between extreme precipitation and GI-

related hospital admissions, and the creation of early-warning systems based on weather 

prediction models could be an interim solution. 

In a majority of low- and middle-income countries meteorological data are not easily linked to 

health data. Although ecological studies using time-series analysis can serve as a cost effective 

design for examining associations, the logistical challenges of data collection often preclude 

development of an analytical framework. We were able to use a high quality data set, leveraging 

data collected for a study investigating air pollution and health effects in Chennai (Balakrishnan 

et al. 2011). Studying health impacts across seasons and during extreme weather events can aid 

in preparation for a future where such extremes are expected to become more common (Cooney 

2011).  

The primary limitation of this study is that gastrointestinal illness remains highly underreported 

so only a subset of cases are identified (Charron et al. 2004; Ford 1999). A second limitation is 

related to data quality. It is clear that 2004 had fewer daily hospital admissions than other years 

as data from Kilpauk Medical College were limited to May-December. To confirm that this trend 

did not bias the results, models were rerun excluding 2004 data. The cumulative risk ratios 

corresponding to GI-related hospital admissions among the young were very consistent, 2.71 

(95% CI: 1.27, 5.78), however, the cumulative risk ratios corresponding to GI-related hospital 

 16 



admissions among the general population and among the old were no longer significant, with 

estimates of 1.09 (95% CI: 0.79, 1.51) and 1.37 (95% CI: 0.76, 2.49), respectively (Supplemental 

Material, Table S2). Acknowledging this limitation, 2004 data were included in our primary 

analysis to maximize our sample size. Nevertheless, our use of a unique 4-year time-series of 

cause-specific hospital admission data and meteorological data for one of the largest cities in 

India is an important contribution to the climate-health literature; future work should focus on 

additional climate-sensitive health outcomes in low- and middle-income countries. 

Changing water consumption patterns and increased pressure on water systems from growing 

urban populations and expanding agriculture will add additional pressure to an already 

overburdened water system. These various factors related to water quality and quantity could 

create high-risk scenarios for water contamination during heavy rain events. Thus, future work 

should evaluate how changing land use patterns and population density influence the risk of 

waterborne disease. In light of the multiple environmental threats that India may face in the years 

ahead (Rao 2010), the impacts of climate change must be evaluated in the context of other global 

environmental factors. Environmental parameters measured by remote satellite imaging and 

subsequent indicators have the potential to provide global coverage of changing environmental 

conditions, but also to predict future risks and inform adaptation strategies (Ford et al. 2009).  

Conclusions 

This study explored the association between extreme precipitation (≥ 90th percentile) and GI-

related hospital admissions in Chennai, India using a four-year time-series data set. The 

cumulative risk ratio for GI-related hospital admissions following extreme precipitation events 

was higher among the young compared to the overall population. These results, in combination 
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with projected changes in precipitation, suggest that climate change will have important 

implications for human health in India where global health disparities and challenges in water 

resource management already exist.  
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Table 1. Daily average meteorological conditions categorized by year and by season in Chennai, 

India 2004-2007 (mean; median (range)) and number of extreme events within each category. 

 Precipitation 
(mm) 

Apparent 
Temperature (°C) 

Extreme Events 
(count) 

By year    

2004 4.05; 0 (0-162) 33; 34 (25-39) 34 
2005 6.40; 0 (0-283) 33; 34 (25-39) 44 
2006 4.03; 0 (0-143) 33; 34 (25-41) 34 
2007 3.45; 0 (0-139) 32; 33 (25-39) 32 
By season    

Winter (January - February) 0.17; 0 (0-23) 28; 28 (25-33) 10 
Pre-Monsoon (March - May) 1.35; 0 (0-123) 35; 35 (29-41) 32 
Early Monsoon (June - 
September) 

4.23; 0 (0-162) 35; 35 (29-39) 70 

Late Monsoon (October - 
December) 

10.73; 0 (0-283) 31; 30 (25-36) 32 

Dry (January-September) 2.38; 0 (0-162) 34; 35 (25-41) 112 
Entire Period (2004-2007)a 4.48; 0 (0-283) 33; 33 (25-41) 144 
aThe 90th percentile for the entire study period (11.94 mm) was used to define extreme 

precipitation.
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Table 2. Daily hospital admissions by year, season, age (young ≤ 5 years of age; old ≥ 65 years of age), and cause from two 

government hospitals in Chennai, India 2004-2007. 

 All-cause GI-relateda Unclassified 
By year    

2004b 46,981 (1,788; 4,295) 2,639 (153; 248)  440 (11; 38) 
2005 76,170 (3,570; 7,156) 4,321 (195; 403)  1,094 (30; 38) 
2006 117,508 (10,131; 9,541) 4,692 (130; 482)  1,282 (41; 53) 
2007 95,065 (9,537; 7,731) 3,071 (73; 345)  10,923 (102; 1,143) 

By season    
Winter (January – February) 57,237 (3,699; 5,105) 2,344 (69; 241) 1,090 (25; 63) 
Pre-Monsoon (March – May) 84,444 (5,440; 7,153) 3,550 (117; 353) 3,519 (45; 324) 
Early Monsoon (June – September) 107,809 (8,616; 8,979) 4,893 (180; 491) 3,865 (81; 273) 
Late Monsoon (October – December) 86,234 (7,301; 7,486) 3,936 (185; 393) 5,265 (33; 612) 

Entire Period (2004-2007) 335,724 (25,026; 28,723) 14,723 (551; 1,478) 13,739 (184; 1,272) 
aCases were defined as GI-related if the primary, secondary, or tertiary ICD-10 code was listed as intestinal infectious disease (A00-

A09), helminthiases (B65-B83), or GI-related symptoms (R11-nausea and vomiting, R50-fever, R51-headache). b2004 data from 

Kilpauk Medical College were limited to May-December. 
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Table 3. Cumulative risk ratio effects of hospitalization associated with extreme precipitation (≥ 

90th percentile) by cause of admission and age category based on the 15-day distributed lag 

modela. 

 Cause of admission Cumulative RR (95% CI) 
All ages All-cause 1.01 (0.89, 1.16) 

 GI-relatedb 1.60 (1.29, 1.98) 
 Unclassified 0.33 (0.19, 0.58) 

Young (≤ 5 years) All-cause 1.04 (0.82, 1.32) 
 GI-related 2.72 (1.25, 5.92) 
 Unclassified 0.86 (0.24, 3.08) 

Old (≥ 65 years) All-cause 0.99 (0.82, 1.19) 
 GI-related 1.62 (0.97, 2.70) 
 Unclassified 0.11 (0.03, 0.37) 

Intermediate (6-64 years) All-cause 1.05 (0.92, 1.21) 
 GI-related 1.61 (1.27, 2.03) 
 Unclassified 0.17 (0.10, 0.32) 

aAll models control for daily average apparent temperature on the day of hospitalization, day of 

week, and time. bCases were defined as GI-related if the primary, secondary, or tertiary ICD-10 

code was listed as intestinal infectious disease (A00-A09), helminthiases (B65-B83), or GI-

related symptoms (R11-nausea and vomiting, R50-fever, R51-headache).  
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Table 4. Comparing cumulative risk ratio effects of hospitalization associated with extreme 

precipitation (≥ 90th percentile) across seasons by cause of admission for all ages based on the 

15-day distributed lag modela. 

Cause of 
admission 

Pre-monsoon  
(March-May 

Early monsoon  
(June-Sept) 

Late monsoon  
(Oct-Dec) 

 Dry  
(Jan-Sept) 

All-cause 4.61 (2.57, 8.26) 1.17 (0.73, 1.87) 0.79 (0.69, 0.92) 1.70 (1.24, 2.33) 
GI-relatedb 6.50 (2.22, 19.04) 0.63 (0.28, 1.45) 0.95 (0.75, 1.20) 1.88 (1.06, 3.33) 
Unclassified 3.15 (0.29, 34.23) 1.86 (0.35, 9.79) 1.00 (0.45, 2.19) 1.68 (0.41, 6.95) 
aAll models control for daily average apparent temperature on the day of hospitalization, day of 

week and time. Season-specific estimates are reported for all ages due to a lack of model 

convergence when stratified by both age and season. No results are presented for Winter (Jan-

Feb) due to a lack of model convergence. bCases were defined as GI-related if the primary, 

secondary, or tertiary ICD-10 code was listed as intestinal infectious disease (A00-A09), 

helminthiases (B65-B83), or GI-related symptoms (R11-nausea and vomiting, R50-fever, R51-

headache).  
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Figure Legends 

Figure 1. Location of Chennai, India depicting the location of Chennai within the state of Tamil 

Nadu as well as the location of Kilpauk Medical College, Madras Medical College, and Chennai 

International Airport. 

Figure 2. Mean daily precipitation (a) and mean daily apparent temperature (b) in Chennai, India 

from 2004 to 2007. The 90th percentile is indicated as a dotted line (--). 
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